Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Insect Sci ; 24(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387434

RESUMEN

Gastrodia elata Blume, a valuable traditional Chinese medicine with significant clinical and nutritional importance, is a fungal heterotrophic orchid. We present the first report of the mitochondrial genome structure and characteristics of 3 Scarabaeidae pests affecting G. elata: Sophrops peronosporus Gu & Zhang, Anomala rufiventris Kollar & Redtenbacher, and Callistethus plagiicollis Fairmaire. Each mitogenome contained 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a control region, with no gene rearrangements observed. All 21 tRNAs, except trnS1 that lacks a dihydrouridine, had a stable cloverleaf secondary structure. Maximum likelihood and Bayesian inference analyses based on the 13 PCGs produced 2 topologically similar phylogenetic trees, both of with high nodal support. Larvae of these Scarabaeidae pests cause substantial damage by gnawing on the tubers and roots of G. elata, leading to reduced yield and compromised quality. These findings contribute to phylogenetic studies of Scarabaeidae, expand knowledge of G. elata pests, and offer valuable reference materials for their identification and control.


Asunto(s)
Asparagales , Escarabajos , Gastrodia , Genoma Mitocondrial , Orchidaceae , Animales , Escarabajos/genética , Gastrodia/química , Gastrodia/genética , Orchidaceae/genética , Asparagales/genética , Filogenia , Teorema de Bayes
2.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139125

RESUMEN

Alzheimer's disease (AD) is currently the most common neurodegenerative disease. Glycogen synthase kinase 3ß (GSK-3ß) is a pivotal factor in AD pathogenesis. Recent research has demonstrated that plant miRNAs exert cross-kingdom regulation on the target genes in animals. Gastrodia elata (G. elata) is a valuable traditional Chinese medicine that has significant pharmacological activity against diseases of the central nervous system (CNS). Our previous studies have indicated that G. elata-specific miRNA plays a cross-kingdom regulatory role for the NF-κB signaling pathway in mice. In this study, further bioinformatics analysis suggested that Gas-miR36-5p targets GSK-3ß. Through western blot, RT-qPCR, and assessments of T-AOC, SOD, and MDA levels, Gas-miR36-5p demonstrated its neuroprotective effects in an AD cell model. Furthermore, Gas-miR36-5p was detected in the murine brain tissues. The results of the Morris water maze test and western blot analysis provided positive evidence for reversing the learning deficits and hyperphosphorylation of Tau in AD mice, elucidating significant neuroprotective effects in an AD model following G. elata RNA administration. Our research emphasizes Gas-miR36-5p as a novel G. elata-specific miRNA with neuroprotective properties in Alzheimer's disease by targeting GSK-3ß. Consequently, our findings provide valuable insights into the cross-kingdom regulatory mechanisms underlying G. elata-specific miRNA, presenting a novel perspective for the treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades de los Animales , Gastrodia , MicroARNs , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Gastrodia/genética , Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , MicroARNs/metabolismo , MicroARNs/farmacología , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fosforilación , Proteínas tau/metabolismo
3.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511216

RESUMEN

Gastrodia pubilabiata is a nonphotosynthetic and mycoheterotrophic orchid belonging to subfamily Epidendroideae. Compared to other typical angiosperm species, the plastome of G. pubilabiata is dramatically reduced in size to only 30,698 base pairs (bp). This reduction has led to the loss of most photosynthesis-related genes and some housekeeping genes in the plastome, which now only contains 19 protein coding genes, three tRNAs, and three rRNAs. In contrast, the typical orchid species contains 79 protein coding genes, 30 tRNAs, and four rRNAs. This study decoded the entire mitogenome of G. pubilabiata, which consisted of 44 contigs with a total length of 867,349 bp. Its mitogenome contained 38 protein coding genes, nine tRNAs, and three rRNAs. The gene content of G. pubilabiata mitogenome is similar to the typical plant mitogenomes even though the mitogenome size is twice as large as the typical ones. To determine possible gene transfer events between the plastome and the mitogenome individual BLASTN searches were conducted, using all available orchid plastome sequences and flowering plant mitogenome sequences. Plastid rRNA fragments were found at a high frequency in the mitogenome. Seven plastid protein coding gene fragments (ndhC, ndhJ, ndhK, psaA, psbF, rpoB, and rps4) were also identified in the mitogenome of G. pubilabiata. Phylogenetic trees using these seven plastid protein coding gene fragments suggested that horizontal gene transfer (HGT) from plastome to mitogenome occurred before losses of photosynthesis related genes, leading to the lineage of G. pubilabiata. Compared to species phylogeny of the lineage of orchid, it was estimated that HGT might have occurred approximately 30 million years ago.


Asunto(s)
Gastrodia , Genoma Mitocondrial , Magnoliopsida , Orchidaceae , Orchidaceae/genética , Gastrodia/genética , Transferencia de Gen Horizontal , Filogenia , Magnoliopsida/genética
4.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3140-3148, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37381996

RESUMEN

The gene GeDTC encoding the dicarboxylate-tricarboxylate carrier protein in Gastrodia elata was cloned by specific primers which were designed based on the transcriptome data of G. elata. Bioinformatics analysis on GeDTC gene was carried out by using ExPASY, ClustalW, MEGA, etc. Positive transgenic plants and potato minituber were obtained by virtue of the potato genetic transformation system. Agronomic characters, such as size, weight, organic acid content, and starch content, of potato minituber were tested and analyzed and GeDTC gene function was preliminarily investigated. The results showed that the open reading frame of GeDTC gene was 981 bp in length and 326 amino acid residues were encoded, with a relative molecular weight of 35.01 kDa. It was predicted that the theoretical isoelectric point of GeDTC protein was 9.83, the instability coefficient was 27.88, and the average index of hydrophilicity was 0.104, which was indicative of a stable hydrophilic protein. GeDTC protein had a transmembrane structure and no signal peptide and was located in the inner membrane of mitochondria. The phylogenetic tree showed that GeDTC was highly homologous with DTC proteins of other plant species, among which GeDTC had the highest homology with DcDTC(XP_020675804.1) in Dendrobium candidum, reaching 85.89%. GeDTC overexpression vector pCambia1300-35Spro-GeDTC was constructed by double digests, and transgenic potato plants were obtained by Agrobacterium-mediated gene transformation. Compared with the wild-type plants, transgenic potato minituber harvested by transplanting had smaller size, lighter weight, lower organic acid content, and no significant difference in starch content. It is preliminarily induced that GeDTC is the efflux channel of tricarboxylate and related to the tuber development, which lays a foundation for further elucidating the molecular mechanism of G. elata tuber development.


Asunto(s)
Gastrodia , Gastrodia/genética , Filogenia , Aminoácidos , Clonación Molecular
5.
BMC Genomics ; 24(1): 275, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37217849

RESUMEN

BACKGROUND: Armillaria species are plant pathogens, but a few Armillaria species can establish a symbiotic relationship with Gastrodia elata, a rootless and leafless orchid, that is used as a Chinese herbal medicine. Armillaria is a nutrient source for the growth of G. elata. However, there are few reports on the molecular mechanism of symbiosis between Armillaria species and G. elata. The genome sequencing and analysis of Armillaria symbiotic with G. elata would provide genomic information for further studying the molecular mechanism of symbiosis. RESULTS: The de novo genome assembly was performed with the PacBio Sequel platform and Illumina NovaSeq PE150 for the A. gallica Jzi34 strain, which was symbiotic with G. elata. Its genome assembly contained ~ 79.9 Mbp and consisted of 60 contigs with an N50 of 2,535,910 bp. There were only 4.1% repetitive sequences in the genome assembly. Functional annotation analysis revealed a total of 16,280 protein coding genes. Compared with the other five genomes of Armillaria, the carbohydrate enzyme gene family of the genome was significantly contracted, while it had the largest set of glycosyl transferase (GT) genes. It also had an expansion of auxiliary activity enzymes AA3-2 gene subfamily and cytochrome P450 genes. The synteny analysis result of P450 genes reveals that the evolutionary relationship of P450 proteins between A. gallica Jzi34 and other four Armillaria was complex. CONCLUSIONS: These characteristics may be beneficial for establishing a symbiotic relationship with G. elata. These results explore the characteristics of A. gallica Jzi34 from a genomic perspective and provide an important genomic resource for further detailed study of Armillaria. This will help to further study the symbiotic mechanism between A. gallica and G. elata.


Asunto(s)
Armillaria , Gastrodia , Armillaria/genética , Simbiosis/genética , Gastrodia/genética , Secuenciación Completa del Genoma
6.
BMC Genomics ; 24(1): 164, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016293

RESUMEN

BACKGROUND: Gastrodia elata (tianma), a well-known medicinal orchid, is widely used to treat various kinds of diseases with its dried tuber. In recent years, new chromosome-level genomes of G.elata have been released in succession, which offer an enormous resource pool for understanding gene function. Previously we have constructed GelFAP for gene functional analysis of G.elata. As genomes are updated and transcriptome data is accumulated, collection data in GelFAP cannot meet the need of researchers. RESULTS: Based on new chromosome-level genome and transcriptome data, we constructed co-expression network of G. elata, and then we annotated genes by aligning with sequences from NR, TAIR, Uniprot and Swissprot database. GO (Gene Ontology) and KEGG (Kyoto Encylopaedia of Genes and Genomes) annotations were predicted by InterProScan and GhostKOALA software. Gene families were further predicted by iTAK (Plant Transcription factor and Protein kinase Identifier and Classifier), HMMER (hidden Markov models), InParanoid. Finally, we developed an improved platform for gene functional analysis in G. elata (GelFAP v2.0) by integrating new genome, transcriptome data and processed functional annotation. Several tools were also introduced to platform including BLAST (Basic Local Alignment Search Tool), GSEA (Gene Set Enrichment Analysis), Heatmap, JBrowse, Motif analysis and Sequence extraction. Based on this platform, we found that the flavonoid biosynthesis might be regulated by transcription factors (TFs) such as MYB, HB and NAC. We also took C4H and GAFP4 as examples to show the usage of our platform. CONCLUSION: An improved platform for gene functional analysis in G. elata (GelFAP v2.0, www.gzybioinformatics.cn/Gelv2 ) was constructed, which provides better genome data, more transcriptome resources and more analysis tools. The updated platform might be preferably benefit researchers to carry out gene functional research for their project.


Asunto(s)
Gastrodia , Gastrodia/genética , Fenotipo
7.
New Phytol ; 237(1): 323-338, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36110047

RESUMEN

Cleistogamy, in which plants can reproduce via self-fertilization within permanently closed flowers, has evolved in > 30 angiosperm lineages; however, consistent with Darwin's doubts about its existence, complete cleistogamy - the production of only cleistogamous flowers - has rarely been recognized. Thus far, the achlorophyllous orchid genus, Gastrodia, is the only known genus with several plausible completely cleistogamous species. Here, we analyzed the floral developmental transcriptomes of two recently evolved, completely cleistogamous Gastrodia species and their chasmogamous sister species to elucidate the possible changes involved in producing common cleistogamous traits. The ABBA-BABA test did not support introgression and protein sequence convergence as evolutionary mechanisms leading to cleistogamy, leaving convergence in gene expression as a plausible mechanism. Regarding transcriptomic differentiation, the two cleistogamous species had common modifications in the expression of developmental regulators, exhibiting a gene family-wide signature of convergent expression changes in MADS-box genes. Our transcriptomic pseudotime analysis revealed a prolonged juvenile state and eventual maturation, a heterochronic pattern consistent with partial neoteny, in cleistogamous flower development. These findings indicate that transcriptomic partial neoteny, arising from changes in the expression of conserved developmental regulators, might have contributed to the rapid and repeated evolution of cleistogamous flowers in Gastrodia.


Asunto(s)
Gastrodia , Transcriptoma , Transcriptoma/genética , Gastrodia/genética , Flores/genética , Reproducción , Fenotipo
8.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2304-2308, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531676

RESUMEN

Mycena, a symbiont of Gastrodia elata, promotes seed germination of G. elata and plays a crucial role in the sexual reproduction of G. elata. However, the lack of genetic transformation system of Mycena blocks the research on the interaction mechanism of the two. In order to establish the protoplast transformation system of Mycena, this study analyzed the protoplast enzymatic hydrolysis system, screened the resistance markers and regeneration medium, and explored the transient transformation. After hydrolysis of Mycena hyphae with complexes enzymes for 8 h and centrifugation at 4 000 r·min~(-1), high-concentration and quality protoplast was obtained. The optimum regeneration medium for Mycena was RMV, and the optimum resistance marker was 50 mg·mL~(-1) hygromycin. The pLH-HygB-HuSHXG-GFP-HdSHXG was transformed into the protoplast of Mycena which then expressed GFP. The established protoplast transformation system of Mycena laid a foundation for analyzing the functional genes of Mycena and the molecular mechanism of the symbiosis of Mycena and G. elata.


Asunto(s)
Agaricales , Gastrodia , Gastrodia/genética , Protoplastos , Simbiosis/genética , Transformación Genética
9.
BMC Plant Biol ; 22(1): 179, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35392808

RESUMEN

BACKGROUND: To illustrate the molecular mechanism of mycoheterotrophic interactions between orchids and fungi, we assembled chromosome-level reference genome of Gastrodia menghaiensis (Orchidaceae) and analyzed the genomes of two species of Gastrodia. RESULTS: Our analyses indicated that the genomes of Gastrodia are globally diminished in comparison to autotrophic orchids, even compared to Cuscuta (a plant parasite). Genes involved in arbuscular mycorrhizae colonization were found in genomes of Gastrodia, and many of the genes involved biological interaction between Gatrodia and symbiotic microbionts are more numerous than in photosynthetic orchids. The highly expressed genes for fatty acid and ammonium root transporters suggest that fungi receive material from orchids, although most raw materials flow from the fungi. Many nuclear genes (e.g. biosynthesis of aromatic amino acid L-tryptophan) supporting plastid functions are expanded compared to photosynthetic orchids, an indication of the importance of plastids even in totally mycoheterotrophic species. CONCLUSION: Gastrodia menghaiensis has the smallest proteome thus far among angiosperms. Many of the genes involved biological interaction between Gatrodia and symbiotic microbionts are more numerous than in photosynthetic orchids.


Asunto(s)
Gastrodia , Micorrizas , Orchidaceae , Gastrodia/genética , Micorrizas/genética , Orchidaceae/genética , Orchidaceae/microbiología , Filogenia , Simbiosis/genética
10.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100375

RESUMEN

Gastrodia elata, an obligate mycoheterotrophic orchid, requires complete carbon and mineral nutrient supplementation from mycorrhizal fungi during its entire life cycle. Although full mycoheterotrophy occurs most often in the Orchidaceae family, no chromosome-level reference genome from this group has been assembled to date. Here, we report a high-quality chromosome-level genome assembly of G. elata, using Illumina and PacBio sequencing methods with Hi-C technique. The assembled genome size was found to be 1045 Mb, with an N50 of 50.6 Mb and 488 scaffolds. A total of 935 complete (64.9%) matches to the 1440 embryophyte Benchmarking Universal Single-Copy Orthologs were identified in this genome assembly. Hi-C scaffolding of the assembled genome resulted in 18 pseudochromosomes, 1008 Mb in size and containing 96.5% of the scaffolds. A total of 18,844 protein-coding sequences (CDSs) were predicted in the G. elata genome, of which 15,619 CDSs (82.89%) were functionally annotated. In addition, 74.92% of the assembled genome was found to be composed of transposable elements. Phylogenetic analysis indicated a significant contraction of genes involved in various biosynthetic processes and cellular components and an expansion of genes for novel metabolic processes and mycorrhizal association. This result suggests an evolutionary adaptation of G. elata to a mycoheterotrophic lifestyle. In summary, the genomic resources generated in this study will provide a valuable reference genome for investigating the molecular mechanisms of G. elata biological functions. Furthermore, the complete G. elata genome will greatly improve our understanding of the genetics of Orchidaceae and its mycoheterotrophic evolution.


Asunto(s)
Gastrodia , Micorrizas , Cromosomas , Gastrodia/genética , Genoma , Micorrizas/genética , Filogenia
11.
Plant J ; 108(6): 1609-1623, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34647389

RESUMEN

Mycoheterotrophic and parasitic plants are heterotrophic and parasitize on fungi and plants, respectively, to obtain nutrients. Large-scale comparative genomics analysis has not been conducted in mycoheterotrophic or parasitic plants or between these two groups of parasites. We assembled a chromosome-level genome of the fully mycoheterotrophic plant Gastrodia elata (Orchidaceae) and performed comparative genomic analyses on the genomes of G. elata and four orchids (initial mycoheterotrophs), three parasitic plants (Cuscuta australis, Striga asiatica, and Sapria himalayana), and 36 autotrophs from various angiosperm lineages. It was found that while in the hemiparasite S. asiatica and initial mycoheterotrophic orchids, approximately 4-5% of the conserved orthogroups were lost, the fully heterotrophic G. elata and C. australis both lost approximately 10% of the conserved orthogroups, indicating that increased heterotrophy is positively associated with gene loss. Importantly, many genes that are essential for autotrophs, including those involved in photosynthesis, the circadian clock, flowering time regulation, immunity, nutrient uptake, and root and leaf development, were convergently lost in both G. elata and C. australis. The high-quality genome of G. elata will facilitate future studies on the physiology, ecology, and evolution of mycoheterotrophic plants, and our findings highlight the critical role of gene loss in the evolution of plants with heterotrophic lifestyles.


Asunto(s)
Gastrodia/genética , Genes de Plantas , Genoma de Planta , Procesos Heterotróficos/genética , Cromosomas de las Plantas , Relojes Circadianos/genética , Evolución Molecular , Flores/genética , Flores/fisiología , Gastrodia/fisiología , Genómica , Intrones , Magnoliopsida/genética , Magnoliopsida/fisiología , Anotación de Secuencia Molecular , Familia de Multigenes , Fotosíntesis/genética , Inmunidad de la Planta/genética , Striga/genética , Striga/fisiología , Simbiosis/genética
12.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207287

RESUMEN

Gastrodia elata is a well-known medicinal and heterotrophic orchid. Its germination, limited by the impermeability of seed coat lignin and inhibition by abscisic acid (ABA), is triggered by symbiosis with fungi such as Mycena spp. However, the molecular mechanisms of lignin degradation by Mycena and ABA biosynthesis and signaling in G. elata remain unclear. In order to gain insights into these two processes, this study analyzed the transcriptomes of these organisms during their dynamic symbiosis. Among the 25 lignin-modifying enzyme genes in Mycena, two ligninolytic class II peroxidases and two laccases were significantly upregulated, most likely enabling Mycena hyphae to break through the lignin seed coats of G. elata. Genes related to reduced virulence and loss of pathogenicity in Mycena accounted for more than half of annotated genes, presumably contributing to symbiosis. After coculture, upregulated genes outnumbered downregulated genes in G. elata seeds, suggesting slightly increased biological activity, while Mycena hyphae had fewer upregulated than downregulated genes, indicating decreased biological activity. ABA biosynthesis in G. elata was reduced by the downregulated expression of 9-cis-epoxycarotenoid dioxygenase (NCED-2), and ABA signaling was blocked by the downregulated expression of a receptor protein (PYL12-like). This is the first report to describe the role of NCED-2 and PYL12-like in breaking G. elata seed dormancy by reducing the synthesis and blocking the signaling of the germination inhibitor ABA. This study provides a theoretical basis for screening germination fungi to identify effective symbionts and for reducing ABA inhibition of G. elata seed germination.


Asunto(s)
Ácido Abscísico/metabolismo , Agaricales/patogenicidad , Proteínas Fúngicas/genética , Gastrodia/microbiología , Lignina/metabolismo , Proteínas de Plantas/genética , Agaricales/genética , Agaricales/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Proteínas Fúngicas/metabolismo , Gastrodia/genética , Gastrodia/crecimiento & desarrollo , Gastrodia/metabolismo , Germinación , Lacasa/genética , Lacasa/metabolismo , Lignina/genética , Peroxidasas/genética , Peroxidasas/metabolismo , Proteínas de Plantas/metabolismo , Simbiosis , Transcriptoma
13.
Fitoterapia ; 153: 104988, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34246745

RESUMEN

Orchidaceae, well known for its fascinating flowers, is one of the largest and most diverse families of flowering plants. There are many kinds of plants in this family; these are distributed practically globally and have high ornamental and medicinal values. Gastrodia elata Blume, a traditional Chinese medicinal herb, is a rootless and leafless achlorophyllous orchid. Phenolic compounds are considered to be the major bioactive constituents in G. elata, with antioxidant, antiangiogenic, neuroprotective, antidepressant, anxiolytic, and sedative activities. In this study, we determined the contents of six main phenolic components in tubers, stems and flowers from G. elata. Meanwhile, the transcriptomes of the tuber, stem and flower tissues of G. elata were obtained using the BGISEQ-500 platform. A total of 58.29 Gb of data and 113,067 unigenes were obtained, of which 74,820 unigenes were functionally annotated against seven public databases. Differentially expressed genes between tuber, stem and flower tissues were identified. A total of 76 DEGs encoding eight key enzymes were identified as candidate genes involved in the biosynthesis of phenolics in G. elata. For further validation, the expression levels of unigenes were measured using quantitative real-time PCR. Our results greatly enrich the transcriptomic data of G. elata and provide valuable information for the identification of candidate genes involved in the biosynthesis of secondary metabolites.


Asunto(s)
Gastrodia/genética , Genes de Plantas , Fenoles/metabolismo , Transcriptoma , Vías Biosintéticas/genética , Flores/genética , Estructura Molecular , Tallos de la Planta/genética , Tubérculos de la Planta/genética , Metabolismo Secundario/genética
14.
BMC Plant Biol ; 20(1): 445, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993485

RESUMEN

BACKGROUND: Gastrodia elata Bl. f. glauca S. Chow is a medicinal plant. G. elata f. glauca is unavoidably infected by pathogens in their growth process. In previous work, we have successfully isolated and identified Penicillium oxalicum from fungal diseased tubers of G. elata f. glauca. As a widespread epidemic, this fungal disease seriously affected the yield and quality of G. elata f. glauca. We speculate that the healthy G. elata F. glauca might carry resistance genes, which can resist against fungal disease. In this study, healthy and fungal diseased mature tubers of G. elata f. glauca from Changbai Mountain area were used as experimental materials to help us find potential resistance genes against the fungal disease. RESULTS: A total of 7540 differentially expressed Unigenes (DEGs) were identified (FDR < 0.01, log2FC > 2). The current study screened 10 potential resistance genes. They were attached to transcription factors (TFs) in plant hormone signal transduction pathway and plant pathogen interaction pathway, including WRKY22, GH3, TIFY/JAZ, ERF1, WRKY33, TGA. In addition, four of these genes were closely related to jasmonic acid signaling pathway. CONCLUSIONS: The immune response mechanism of fungal disease in G. elata f. glauca is a complex biological process, involving plant hormones such as ethylene, jasmonic acid, salicylic acid and disease-resistant transcription factors such as WRKY, TGA.


Asunto(s)
Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Gastrodia/genética , Gastrodia/inmunología , Perfilación de la Expresión Génica , Penicillium/patogenicidad , Plantas Medicinales/genética , China , Gastrodia/microbiología , Tubérculos de la Planta/microbiología , Plantas Medicinales/inmunología
15.
Biochem Genet ; 58(6): 914-934, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32632662

RESUMEN

Gastrodia elata is a traditional Chinese herbal medicine with good therapeutic effect on various nervous and cerebrovascular diseases. In the present study, we generated 20,611,556 raw reads from the young tuber transcriptome of a G. elata hybrid (Gastrodia elata BI.f.elata × Gastrodia elata BI.f.pilifera) by using Illumina HiSeq™ 4000 sequencing platform. De novo assembly and bioinformatics analysis revealed 20,237,474 clean reads, including 2,529,684,250 bp that assembled into 34,323 unigenes with an average length of 695.19 bp. Among them, 24,698 (71.96%) unigenes were annotated by at least one of the Nr, Swiss-Prot, COG and KEGG databases. A total of 4236 (12.34%) unigenes were identified as candidate transcription factors, and 2007 (5.85%) unigenes were found to contain at least one single sequence repeat (SSR). Of these SSRs, AG/CT repeat motif was the most frequent, with a total of 498 (21.67%). This study will enhance our understanding about the molecular mechanism of physiological metabolism, growth and development of G. elata, particularly abundant SSR markers will offer plenty of alternative tools for further studies about molecular genetics, molecular breeding and association analysis.


Asunto(s)
Gastrodia , Repeticiones de Microsatélite , Tubérculos de la Planta , RNA-Seq , Transcriptoma , Gastrodia/genética , Gastrodia/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo
16.
Genes Genet Syst ; 94(5): 225-229, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31813889

RESUMEN

Gastrodia is the most species-rich genus among mycoheterotrophic plants, and is thus an essential taxon to understand the mechanism of species diversification in mycoheterotrophs. In this study, we developed microsatellite markers with high transferability for four Gastrodia species to examine genetic differentiation and similarity among species, populations and individuals. The 12 microsatellite markers developed from a G. fontinalis library showed high transferability for the ramets that identified G. nipponica, G. kuroshimensis and G. takeshimensis. In addition to the high transferability of these markers, we observed low allele variation within a sampled population of each species and allele differences among the four species. The 12 markers described here will be useful for investigating the genetic differences among and within the Gastrodia species, which evolved by a limitation of gene flow.


Asunto(s)
Gastrodia/genética , Repeticiones de Microsatélite , Genoma de Planta , Especificidad de la Especie
17.
Nat Commun ; 9(1): 1615, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29691383

RESUMEN

We present the 1.06 Gb sequenced genome of Gastrodia elata, an obligate mycoheterotrophic plant, which contains 18,969 protein-coding genes. Many genes conserved in other plant species have been deleted from the G. elata genome, including most of those for photosynthesis. Additional evidence of the influence of genome plasticity in the adaptation of this mycoheterotrophic lifestyle is evident in the large number of gene families that are expanded in G. elata, including glycoside hydrolases and urease that likely facilitate the digestion of hyphae are expanded, as are genes associated with strigolactone signaling, and ATPases that may contribute to the atypical energy metabolism. We also find that the plastid genome of G. elata is markedly smaller than that of green plant species while its mitochondrial genome is one of the largest observed to date. Our report establishes a foundation for studying adaptation to a mycoheterotrophic lifestyle.


Asunto(s)
Gastrodia/fisiología , Genoma de Planta , Proteínas de Plantas/genética , Aclimatación , Adaptación Fisiológica , Gastrodia/clasificación , Gastrodia/genética , Procesos Heterotróficos , Filogenia , Proteínas de Plantas/metabolismo
18.
Gene ; 646: 136-142, 2018 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-29305972

RESUMEN

BACKGROUND: Late embryogenesis abundant (LEA) proteins were initially discovered about 35years ago as accumulating late in embryogenesis of cotton seeds. Although abundant in seeds and pollens, these proteins have been found to protect cells against desiccation, cold, high temperature, and high salinity. OBJECTIVE: Here, we present the first comprehensive survey of LEA proteins and their encoding genes in Gastrodia elata, a well-known medicinal orchid in China. Moreover, we researched on LEA family evolutionary relationships and functional characteristics. METHODS: The LEA gene family in G. elata (GeLEAs) was cloned based on RNA-Seq data. In addition, all of GeLEA genes were introduced into Escherichia coli to assess the function of GeLEAs under low temperature stress. RESULTS: Based on the phylogenetic analysis with Arabidopsis and Oryza LEA proteins, we identified 8 LEA protein encoding genes in G. elata that could be classified into 6 distinct subgroups. The motif composition of these proteins was an important feature specific to LEA groups. Compared with control, the expressions of 5 GeLEAs in E. coli exhibited enhanced cold resistance and viability, indicating that GeLEAs protein could play a protective role in cells under low temperature stress. CONCLUSION: Our results suggest that LEAs from G. elata play an important role in responses to abiotic stress.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Gastrodia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clonación Molecular , Frío , Escherichia coli/genética , Evolución Molecular , Gastrodia/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Estrés Fisiológico
20.
BMC Genomics ; 17: 212, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26960548

RESUMEN

BACKGROUND: Gastrodia elata Blume (Orchidaceae) is an important Chinese medicine with several functional components. In the life cycle of G. elata, the orchid develops a symbiotic relationship with two compatible mycorrhizal fungi Mycena spp. and Armillaria mellea during seed germination to form vegetative propagation corm and vegetative growth to develop tubers, respectively. Gastrodin (p-hydroxymethylphenol-beta-D-glucoside) is the most important functional component in G. elata, and gastrodin significantly increases from vegetative propagation corms to tubers. To address the gene regulation mechanism in gastrodin biosynthesis in G. elata, a comparative analysis of de novo transcriptome sequencing among the vegetative propagation corms and tubers of G. elata and A. mellea was conducted using deep sequencing. RESULTS: Transcriptome comparison between the vegetative propagation corms and juvenile tubers of G. elata revealed 703 differentially expressed unigenes, of which 298 and 405 unigenes were, respectively up-regulated (fold-change ≥ 2, q-value < 0.05, the trimmed mean of M-values (TMM)-normalized fragments per kilobase of transcript per Million mapped reads (FPKM) > 10) and down-regulated (fold-change ≤ 0.5, q-value <0.05, TMM-normalized FPKM > 10) in juvenile tubers. After Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, 112 up-regulated unigenes with KEGG Ortholog identifiers (KOids) or enzyme commission (EC) numbers were assigned to 159 isogroups involved in seventy-eight different pathways, and 132 down-regulated unigenes with KOids or EC numbers were assigned to 168 isogroups, involved in eighty different pathways. The analysis of the isogroup genes from all pathways revealed that the two unigenes TRINITY_DN54282_c0_g1 (putative monooxygenases) and TRINITY_DN50323_c0_g1 (putative glycosyltransferases) might participate in hydroxylation and glucosylation in the gastrodin biosynthetic pathway. CONCLUSIONS: The gene expression of the two unique unigenes encoding monooxygenase and glycosyltransferase significantly increases from vegetative propagation corms to tubers, and the molecular basis of gastrodin biosynthesis in the tubers of G. elata is proposed.


Asunto(s)
Gastrodia/genética , Glucósidos/biosíntesis , Simbiosis/genética , Transcriptoma , Agaricales , Alcoholes Bencílicos , Gastrodia/microbiología , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Micorrizas , Tubérculos de la Planta/genética , Tubérculos de la Planta/microbiología , ARN de Planta/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA